
Dynamic Runtime Migration

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Observations

Techniques for Managing Data Distribution in NUMA Systems

0

1000

2000

3000

4000

5000

6000

242016128421

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of Threads

HPCCG

OS Sched / First-Touch (OMP)
OS Sched / Page Interleave (OMP)

Pin RR / Block Interleave (OMP)
Pin RR / Next-Touch (OMP)

OS Sched / First-Touch (MPI)

0

10000

20000

30000

40000

50000

0 2 4 6 8 10 12 14 16 18 20 22 24

B
an

dw
id

th
 (

M
B

ps
)

Number of Threads

Stream (Copy)

OS Sched / First-Touch (OMP)
OS Sched / Page Interleave (OMP)

Pin Asc / First-Touch (OMP)
Pin RR / First-Touch (OMP)

0

10000

20000

30000

40000

50000

0 2 4 6 8 10 12 14 16 18 20 22 24

B
an

dw
id

th
 (

M
B

ps
)

Number of Threads

Stream (Triad)

OS Sched / First-Touch (OMP)
OS Sched / Page Interleave (OMP)

Pin Asc / First-Touch (OMP)
Pin RR / First-Touch (OMP)

Profile Faster Exec Profile Faster Exec Profile Faster Exec

Normal Execution

Timeoriginal

Timeoptimized

Ap
pl

ic
at

io
n

M
em

or
y

Page
Table

Page
Table

Page
Table

Page
Table

Page
Table

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

NUMA
Domain

0

NUMA
Domain

1

NUMA
Domain

2

NUMA
Domain

3

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

NUMA
Domain

0

NUMA
Domain

1

NUMA
Domain

2

NUMA
Domain

3

Current
One page table

per address space{ Proposal
One page table

per domain
per address space{

Methods

First-Touch
 Default allocation strategy in Linux kernel. Pages allocated in
 NUMA domain where first access is observed. No migration is
 performed.

Interleaving
 Kernel-supported page interleaving among domains (numactl)
 BIOS-supported cacheline interleaving among domains (MMU)

Next-Touch
 Kernel patch [Goglin 2009]. madvise() system call enhanced to
 trap pages on access using page table protection bits.

Introduction

Proposal

* Automate memory distribution to account for application phases
 - Periodically profile application at runtime to observe access patterns
* Provide transparency to application; no recompiling

Technique

* Use the page table!
* Need source and destination domain, frequency of memory accesses
* Each memory page represented by page table entry
 - Processor updates access bit. But only one bit per page across domains
* Solution: duplicate page tables to increase access bits, and install
 appropriate page table in CPU core's cr3 register when thread scheduled.
* Implementation in Kitten Lightweight kernel (coming soon)

Optimizations

* Use of large pages
* Linear allocation of page table entries
* Widen access bit to a saturating counter

Alexander M. Merritt
merritt.alex@gatech.edu

Center for Experimental Research in Computer Systems
College of Computing, Georgia Institute of Technology

Atlanta, GA

Karsten Schwan
schwan@cc.gatech.edu

Center for Experimental Research in Computer Systems
College of Computing, Georgia Institute of Technology

Atlanta, GA

Kevin T. Pedretti
ktpedre@sandia.gov

Sandia National Laboratories
Albuquerque, NM

Benchmark Phases
* Pintool, a dynamic binary instrumentation tool, allows us to capture
 each memory access: address, access type, etc.
* For our purposes, a phase relates only to memory access patterns.
* Visualizing application phases enables developers to identify
 behavioral patterns.

HPCCG (left two)

* Linear system solver using the conjugate gradient method. Important
 representative compute kernel for HPC codes at Sandia
* Phase 1: main thread allocates and initializes all data
* Phase 2: fork threads, perform computation

STREAM (right)

* Synthetic parallel (OpenMP)
 memory bandwidth benchmark
* One phase: spawn & compute

Future
* Examine additional codes
* Automate application phase
 visualization and detection
 during instrumentation

Discussion

* Current methods are static and only improve performance for specific phase
 characteristics:
 - first-touch with thread pinning is most beneficial for STREAM, but is a
 scalability limiter for HPCCG
 - next-touch with thread pinning is most beneficial for HPCCG

* The Linux process scheduler is unaware of thread/data affinities. This is evident
 with HPCCG: even with MPI (turquoise) where state is replicated and allocated
 locally, the scheduler will still shuffle tasks among cores (wide error bars).

* "Pin Asc" indicates threads were pinned to cores using Linux-logical IDs (gray).
 Their mapping may change, giving different performance results. In our case,
 core IDs 1-12 correlated to NUMA domains 0-1, saturating memory bandwidth
 using only 4 threads.

Background

Application developers increasingly use hybrid programming
models: threading within a node, MPI between nodes.
Threading models assume shared UMA and avoid intra-address
space data distribution.
Supercomputing hardware becoming less uniform: more cores and
deeper NUMA latencies (diagram above): latencies limit scalability

*

*

*

Magny-Cours the basis for Sandia/LANL "Cielo" supercomputer
Operating system process scheduler unaware of affinity between
thread and data.
Programmer required to explicitly manage memory distribution
within address space. Methods for doing so are primitive and
intrusive.
Application runtime phases influence memory access behavior.
Static intra-address space memory distribution policies not adaptive.

*
*

*

*

Motivation

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

0 1 2

3 4 5

H
Tx

1
6

H
Tx

1
6

HTx16

6.4 GT/s 10.4 GB/s per dir

HTx16

HTx
8 HTx8

10.6 GB/s

10.6 GB/s

6.4 GT/s 10.4 GB/s per dir

MCM Socket 0 MCM Socket 1

Die 0

Die 1

Die 2

Die 3

D
o
m

a
in

 0
D

o
m

a
in

 1

D
o
m

a
in

 3
D

o
m

a
in

 2

AMD Opteron 6174 "Magny-Cours" (2.3GHz)

